Cargando…
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
Data-driven fault diagnosis methods for rotating machinery have developed rapidly with the help of deep learning methods. However, traditional intelligent fault diagnosis methods still have some limitations in fault feature extraction and the latest object detection theory has not been applied in fa...
Autores principales: | Tang, Jiahui, Wu, Jimei, Qing, Jiajuan, Kang, Tuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778231/ https://www.ncbi.nlm.nih.gov/pubmed/36554227 http://dx.doi.org/10.3390/e24121822 |
Ejemplares similares
-
An Attention EfficientNet-Based Strategy for Bearing Fault Diagnosis under Strong Noise
por: Hu, Bingbing, et al.
Publicado: (2022) -
An Early Fault Diagnosis Method of Rolling Bearings on the Basis of Adaptive Frequency Window and Sparse Coding Shrinkage
por: Wan, Shuting, et al.
Publicado: (2019) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
por: Xie, Wensong, et al.
Publicado: (2022) -
A Rolling Bearing Fault Feature Extraction Algorithm Based on IPOA-VMD and MOMEDA
por: Yi, Kang, et al.
Publicado: (2023)