Cargando…
A Multi-Trait Gaussian Kernel Genomic Prediction Model under Three Tunning Strategies
While genomic selection (GS) began revolutionizing plant breeding when it was proposed around 20 years ago, its practical implementation is still challenging as many factors affect its accuracy. One such factor is the choice of the statistical machine learning method. For this reason, we explore the...
Autores principales: | Kismiantini, Montesinos-López, Abelardo, Cano-Páez, Bernabe, Montesinos-López, J. Cricelio, Chavira-Flores, Moisés, Montesinos-López, Osval A., Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778253/ https://www.ncbi.nlm.nih.gov/pubmed/36553548 http://dx.doi.org/10.3390/genes13122279 |
Ejemplares similares
-
A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A guide for kernel generalized regression methods for genomic-enabled prediction
por: Montesinos-López, Abelardo, et al.
Publicado: (2021) -
Two simple methods to improve the accuracy of the genomic selection methodology
por: Montesinos-López, Osval A., et al.
Publicado: (2023) -
A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model
por: Montesinos-López, Osval A., et al.
Publicado: (2018)