Cargando…
Penalty and Shrinkage Strategies Based on Local Polynomials for Right-Censored Partially Linear Regression
This study aims to propose modified semiparametric estimators based on six different penalty and shrinkage strategies for the estimation of a right-censored semiparametric regression model. In this context, the methods used to obtain the estimators are ridge, lasso, adaptive lasso, SCAD, MCP, and el...
Autores principales: | Ahmed, Syed Ejaz, Aydın, Dursun, Yılmaz, Ersin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778259/ https://www.ncbi.nlm.nih.gov/pubmed/36554238 http://dx.doi.org/10.3390/e24121833 |
Ejemplares similares
-
Modified Local Linear Estimators in Partially Linear Additive Models with Right-Censored Data Based on Different Censorship Solution Techniques
por: Yılmaz, Ersin, et al.
Publicado: (2023) -
Right-Censored Time Series Modeling by Modified Semi-Parametric A-Spline Estimator
por: Aydın, Dursun, et al.
Publicado: (2021) -
Penalty, shrinkage and pretest strategies: variable selection and estimation
por: Ahmed, S Ejaz
Publicado: (2014) -
An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
por: Fang, Kai-Tai, et al.
Publicado: (2013) -
Penalized regression for left‐truncated and right‐censored survival data
por: McGough, Sarah F., et al.
Publicado: (2021)