Cargando…
A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques
Coronavirus disease, frequently referred to as COVID-19, is a contagious and transmittable disease produced by the SARS-CoV-2 virus. The only solution to tackle this virus and reduce its spread is early diagnosis. Pathogenic laboratory tests such as the polymerase chain reaction (PCR) process take a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778261/ https://www.ncbi.nlm.nih.gov/pubmed/36553967 http://dx.doi.org/10.3390/healthcare10122443 |
Sumario: | Coronavirus disease, frequently referred to as COVID-19, is a contagious and transmittable disease produced by the SARS-CoV-2 virus. The only solution to tackle this virus and reduce its spread is early diagnosis. Pathogenic laboratory tests such as the polymerase chain reaction (PCR) process take a long time. Also, they regularly produce incorrect results. However, they are still considered the critical standard for detecting the virus. Hence, there is a solid need to evolve computer-assisted diagnosis systems capable of providing quick and low-cost testing in areas where traditional testing procedures are not feasible. This study focuses on COVID-19 detection using X-ray images. The prime objective is to introduce a computer-assisted diagnosis (CAD) system to differentiate COVID-19 from healthy and pneumonia cases using X-ray image sequences. This work utilizes standard transfer-learning techniques for COVID-19 detection. It proposes the master–slave architecture using the most state-of-the-art Densenet201 and Squeezenet1_0 techniques for classifying the COVID-19 virus in chest X-ray image sequences. This paper compares the proposed models with other standard transfer-learning approaches for COVID-19. The performance metrics demonstrate that the proposed approach outperforms standard transfer-learning approaches. This research also fine-tunes hyperparameters and predicts the optimized learning rate to achieve the highest accuracy in the model. After fine-tuning the learning rate, the DenseNet201 model retrieves an accuracy of 83.33%, while the fastest model is SqueezeNet1_0, which retrieves an accuracy of 80%. |
---|