Cargando…

A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques

Coronavirus disease, frequently referred to as COVID-19, is a contagious and transmittable disease produced by the SARS-CoV-2 virus. The only solution to tackle this virus and reduce its spread is early diagnosis. Pathogenic laboratory tests such as the polymerase chain reaction (PCR) process take a...

Descripción completa

Detalles Bibliográficos
Autores principales: Aljohani, Abeer, Alharbe, Nawaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778261/
https://www.ncbi.nlm.nih.gov/pubmed/36553967
http://dx.doi.org/10.3390/healthcare10122443
Descripción
Sumario:Coronavirus disease, frequently referred to as COVID-19, is a contagious and transmittable disease produced by the SARS-CoV-2 virus. The only solution to tackle this virus and reduce its spread is early diagnosis. Pathogenic laboratory tests such as the polymerase chain reaction (PCR) process take a long time. Also, they regularly produce incorrect results. However, they are still considered the critical standard for detecting the virus. Hence, there is a solid need to evolve computer-assisted diagnosis systems capable of providing quick and low-cost testing in areas where traditional testing procedures are not feasible. This study focuses on COVID-19 detection using X-ray images. The prime objective is to introduce a computer-assisted diagnosis (CAD) system to differentiate COVID-19 from healthy and pneumonia cases using X-ray image sequences. This work utilizes standard transfer-learning techniques for COVID-19 detection. It proposes the master–slave architecture using the most state-of-the-art Densenet201 and Squeezenet1_0 techniques for classifying the COVID-19 virus in chest X-ray image sequences. This paper compares the proposed models with other standard transfer-learning approaches for COVID-19. The performance metrics demonstrate that the proposed approach outperforms standard transfer-learning approaches. This research also fine-tunes hyperparameters and predicts the optimized learning rate to achieve the highest accuracy in the model. After fine-tuning the learning rate, the DenseNet201 model retrieves an accuracy of 83.33%, while the fastest model is SqueezeNet1_0, which retrieves an accuracy of 80%.