Cargando…
A New Deep Learning Method with Self-Supervised Learning for Delineation of the Electrocardiogram
Heartbeat characteristic points are the main features of an electrocardiogram (ECG), which can provide important information for ECG-based cardiac diagnosis. In this manuscript, we propose a self-supervised deep learning framework with modified Densenet to detect ECG characteristic points, including...
Autores principales: | Wu, Wenwen, Huang, Yanqi, Wu, Xiaomei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778283/ https://www.ncbi.nlm.nih.gov/pubmed/36554233 http://dx.doi.org/10.3390/e24121828 |
Ejemplares similares
-
Detection of maternal and fetal stress from the electrocardiogram with self-supervised representation learning
por: Sarkar, Pritam, et al.
Publicado: (2021) -
Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm
por: Darmawahyuni, Annisa, et al.
Publicado: (2023) -
A self-supervised deep learning method for data-efficient training in genomics
por: Gündüz, Hüseyin Anil, et al.
Publicado: (2023) -
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
State-of-the-Art Deep Learning Methods on Electrocardiogram Data: Systematic Review
por: Petmezas, Georgios, et al.
Publicado: (2022)