Cargando…

Numerical Investigation of Overtopping Prevention for Optimal Safety Dike Design

Leakage accidents at chemical facilities have a negative impact on both the environment and human life, and the government has established and implemented regulations on dikes in order to minimize such accidents. However, the overtopping phenomenon in which chemicals overflow the dike due to catastr...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Namjeong, Kim, Yoojin, Min, Mimi, Jung, Seungho, Kang, Chankyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778300/
https://www.ncbi.nlm.nih.gov/pubmed/36554310
http://dx.doi.org/10.3390/ijerph192416429
Descripción
Sumario:Leakage accidents at chemical facilities have a negative impact on both the environment and human life, and the government has established and implemented regulations on dikes in order to minimize such accidents. However, the overtopping phenomenon in which chemicals overflow the dike due to catastrophic leakage requires additional safeguards. In this study, the mitigation effect was confirmed by simulating tanks and dikes using various deflector plates to minimize the effect of spilled chemicals. ANSYS Fluent 19.1, a computational fluid dynamics program, was used, and the overtopping effect was compared with a dike design that satisfies the safety regulations using a volume of fluid (VOF) model that analyzes multiphase flow through a surface tracking technique. Nitric acid and sulfuric acid were used in the study; they were selected because they are frequently involved in leakage accidents. In the event of a leak in a liquid tank, a dike with a deflector plate was very effective in reducing overtopping, and a deflector at a 45° angle was more effective than a 30° deflector. However, it is necessary to install additional safeguards at the joint between the dike and the deflection plate to withstand the force of the liquid.