Cargando…

Does Supramolecular Gelation Require an External Trigger?

The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spo...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Lommel, Ruben, Van Hooste, Julie, Vandaele, Johannes, Steurs, Gert, Van der Donck, Tom, De Proft, Frank, Rocha, Susana, Sakellariou, Dimitrios, Alonso, Mercedes, De Borggraeve, Wim M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778329/
https://www.ncbi.nlm.nih.gov/pubmed/36547337
http://dx.doi.org/10.3390/gels8120813
_version_ 1784856331836981248
author Van Lommel, Ruben
Van Hooste, Julie
Vandaele, Johannes
Steurs, Gert
Van der Donck, Tom
De Proft, Frank
Rocha, Susana
Sakellariou, Dimitrios
Alonso, Mercedes
De Borggraeve, Wim M.
author_facet Van Lommel, Ruben
Van Hooste, Julie
Vandaele, Johannes
Steurs, Gert
Van der Donck, Tom
De Proft, Frank
Rocha, Susana
Sakellariou, Dimitrios
Alonso, Mercedes
De Borggraeve, Wim M.
author_sort Van Lommel, Ruben
collection PubMed
description The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.
format Online
Article
Text
id pubmed-9778329
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97783292022-12-23 Does Supramolecular Gelation Require an External Trigger? Van Lommel, Ruben Van Hooste, Julie Vandaele, Johannes Steurs, Gert Van der Donck, Tom De Proft, Frank Rocha, Susana Sakellariou, Dimitrios Alonso, Mercedes De Borggraeve, Wim M. Gels Article The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network. MDPI 2022-12-10 /pmc/articles/PMC9778329/ /pubmed/36547337 http://dx.doi.org/10.3390/gels8120813 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Van Lommel, Ruben
Van Hooste, Julie
Vandaele, Johannes
Steurs, Gert
Van der Donck, Tom
De Proft, Frank
Rocha, Susana
Sakellariou, Dimitrios
Alonso, Mercedes
De Borggraeve, Wim M.
Does Supramolecular Gelation Require an External Trigger?
title Does Supramolecular Gelation Require an External Trigger?
title_full Does Supramolecular Gelation Require an External Trigger?
title_fullStr Does Supramolecular Gelation Require an External Trigger?
title_full_unstemmed Does Supramolecular Gelation Require an External Trigger?
title_short Does Supramolecular Gelation Require an External Trigger?
title_sort does supramolecular gelation require an external trigger?
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778329/
https://www.ncbi.nlm.nih.gov/pubmed/36547337
http://dx.doi.org/10.3390/gels8120813
work_keys_str_mv AT vanlommelruben doessupramoleculargelationrequireanexternaltrigger
AT vanhoostejulie doessupramoleculargelationrequireanexternaltrigger
AT vandaelejohannes doessupramoleculargelationrequireanexternaltrigger
AT steursgert doessupramoleculargelationrequireanexternaltrigger
AT vanderdoncktom doessupramoleculargelationrequireanexternaltrigger
AT deproftfrank doessupramoleculargelationrequireanexternaltrigger
AT rochasusana doessupramoleculargelationrequireanexternaltrigger
AT sakellarioudimitrios doessupramoleculargelationrequireanexternaltrigger
AT alonsomercedes doessupramoleculargelationrequireanexternaltrigger
AT deborggraevewimm doessupramoleculargelationrequireanexternaltrigger