Cargando…
Estimating Gaussian Copulas with Missing Data with and without Expert Knowledge
In this work, we present a rigorous application of the Expectation Maximization algorithm to determine the marginal distributions and the dependence structure in a Gaussian copula model with missing data. We further show how to circumvent a priori assumptions on the marginals with semiparametric mod...
Autores principales: | Kertel, Maximilian, Pauly, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778345/ https://www.ncbi.nlm.nih.gov/pubmed/36554254 http://dx.doi.org/10.3390/e24121849 |
Ejemplares similares
-
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture
por: Ashrafi, Mahnaz, et al.
Publicado: (2022) -
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula
por: Ince, Robin A.A., et al.
Publicado: (2016) -
A unified Gaussian copula methodology for spatial regression analysis
por: Hughes, John
Publicado: (2022) -
Copula miss-specification in REML multivariate genetic animal model estimation
por: Rohmer, Tom, et al.
Publicado: (2022) -
A new family of modified Gaussian copulas for market consistent valuation of government guarantees
por: Cerqueti, Roy, et al.
Publicado: (2022)