Cargando…
Exploiting Dual-Attention Networks for Explainable Recommendation in Heterogeneous Information Networks
The aim of explainable recommendation is not only to provide recommended items to users, but also to make users aware of why these items are recommended. Traditional recommendation methods infer user preferences for items using user–item rating information. However, the expressive power of latent re...
Autores principales: | Zuo, Xianglin, Jia, Tianhao, He, Xin, Yang, Bo, Wang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778359/ https://www.ncbi.nlm.nih.gov/pubmed/36554126 http://dx.doi.org/10.3390/e24121718 |
Ejemplares similares
-
Meta-path guided graph attention network for explainable herb recommendation
por: Jin, Yuanyuan, et al.
Publicado: (2023) -
Dual Attention and Patient Similarity Network for drug recommendation
por: Wu, Jialun, et al.
Publicado: (2023) -
Relational Metric Learning with Dual Graph Attention Networks for Social Recommendation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Exploiting Publication Contents and Collaboration Networks for Collaborator Recommendation
por: Kong, Xiangjie, et al.
Publicado: (2016) -
Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks
por: Zuo, Chao, et al.
Publicado: (2022)