Cargando…
Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion
Accurate segmentation of lung nodules from pulmonary computed tomography (CT) slices plays a vital role in the analysis and diagnosis of lung cancer. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in the automatic segmentation of lung nodules. However, they are still...
Autores principales: | Tang, Tiequn, Li, Feng, Jiang, Minshan, Xia, Xunpeng, Zhang, Rongfu, Lin, Kailin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778431/ https://www.ncbi.nlm.nih.gov/pubmed/36554161 http://dx.doi.org/10.3390/e24121755 |
Ejemplares similares
-
Study on Identification Method of Pulmonary Nodules: Improved Random Walk Pulmonary Parenchyma Segmentation and Fusion Multi-Feature VGG16 Nodule Classification
por: Zhang, Yanrong, et al.
Publicado: (2022) -
Pulmonary Nodule Detection Based on Multiscale Feature Fusion
por: Zhao, Yue, et al.
Publicado: (2022) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
MBFFNet: Multi-Branch Feature Fusion Network for Colonoscopy
por: Su, Houcheng, et al.
Publicado: (2021) -
A multi-feature image retrieval scheme for pulmonary nodule diagnosis
por: Wei, Guohui, et al.
Publicado: (2020)