Cargando…
Tr-Predictior: An Ensemble Transfer Learning Model for Small-Sample Cloud Workload Prediction
Accurate workload prediction plays a key role in intelligent scheduling decisions on cloud platforms. There are massive amounts of short-workload sequences in the cloud platform, and the small amount of data and the presence of outliers make accurate workload sequence prediction a challenge. For the...
Autores principales: | Liu, Chunhong, Jiao, Jie, Li, Weili, Wang, Jingxiong, Zhang, Junna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778472/ https://www.ncbi.nlm.nih.gov/pubmed/36554175 http://dx.doi.org/10.3390/e24121770 |
Ejemplares similares
-
Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments
por: Ahamed, Zaakki, et al.
Publicado: (2023) -
Instance Transfer Learning with Multisource Dynamic TrAdaBoost
por: Zhang, Qian, et al.
Publicado: (2014) -
Theories and Methods for Labeling Cognitive Workload: Classification and Transfer Learning
por: McKendrick, Ryan, et al.
Publicado: (2019) -
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
por: Dokeroglu, Tansel, et al.
Publicado: (2014) -
A Green Strategy for Federated and Heterogeneous Clouds with Communicating Workloads
por: Mateo, Jordi, et al.
Publicado: (2014)