Cargando…
Bioinformatics Prediction and Machine Learning on Gene Expression Data Identifies Novel Gene Candidates in Gastric Cancer
Gastric cancer (GC) is one of the five most common cancers in the world and unfortunately has a high mortality rate. To date, the pathogenesis and disease genes of GC are unclear, so the need for new diagnostic and prognostic strategies for GC is undeniable. Despite particular findings in this regar...
Autores principales: | Kori, Medi, Gov, Esra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778573/ https://www.ncbi.nlm.nih.gov/pubmed/36553500 http://dx.doi.org/10.3390/genes13122233 |
Ejemplares similares
-
Bioinformatics methods for identifying candidate disease genes
por: van Driel, Marc A, et al.
Publicado: (2006) -
Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer
por: Gov, Esra, et al.
Publicado: (2017) -
A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning
por: Lai, Guichuan, et al.
Publicado: (2022) -
Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective
por: Kori, Medi, et al.
Publicado: (2018) -
Identification of key candidate genes for IgA nephropathy using machine learning and statistics based bioinformatics models
por: Al Mehedi Hasan, Md., et al.
Publicado: (2022)