Cargando…
A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction
Genomic prediction is revolutionizing plant breeding since candidate genotypes can be selected without the need to measure their trait in the field. When a reference population contains both phenotypic and genotypic information, it is trained by a statistical machine learning method that is subseque...
Autores principales: | Montesinos-López, Osval A., Carter, Arron H., Bernal-Sandoval, David Alejandro, Cano-Paez, Bernabe, Montesinos-López, Abelardo, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778581/ https://www.ncbi.nlm.nih.gov/pubmed/36553547 http://dx.doi.org/10.3390/genes13122282 |
Ejemplares similares
-
A Multi-Trait Gaussian Kernel Genomic Prediction Model under Three Tunning Strategies
por: Kismiantini,, et al.
Publicado: (2022) -
A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
por: Montesinos López, Osval Antonio, et al.
Publicado: (2022) -
A guide for kernel generalized regression methods for genomic-enabled prediction
por: Montesinos-López, Abelardo, et al.
Publicado: (2021) -
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019)