Cargando…
A Dual Adaptive Interaction Click-Through Rate Prediction Based on Attention Logarithmic Interaction Network
Click-through rate (CTR) prediction is crucial for computing advertisement and recommender systems. The key challenge of CTR prediction is to accurately capture user interests and deliver suitable advertisements to the right people. However, there are an immense number of features in CTR prediction...
Autores principales: | Li, Shiqi, Cui, Zhendong, Pei, Yongquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778598/ https://www.ncbi.nlm.nih.gov/pubmed/36554236 http://dx.doi.org/10.3390/e24121831 |
Ejemplares similares
-
Graph Attention Interaction Aggregation Network for Click-Through Rate Prediction
por: Zhang, Wei, et al.
Publicado: (2022) -
GAIN: A Gated Adaptive Feature Interaction Network for Click-Through Rate Prediction
por: Liu, Yaoxun, et al.
Publicado: (2022) -
An adaptive hybrid XdeepFM based deep Interest network model for click-through rate prediction system
por: Lu, Qiao, et al.
Publicado: (2021) -
On the properties of amplitudes with a logarithmically increasing interaction radius
por: Gribov, Vladimir Naumovich, et al.
Publicado: (1971) -
Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Zhu, Danqing
Publicado: (2021)