Cargando…
Path Planning Research of a UAV Base Station Searching for Disaster Victims’ Location Information Based on Deep Reinforcement Learning
Aiming at the path planning problem of unmanned aerial vehicle (UAV) base stations when performing search tasks, this paper proposes a Double DQN-state splitting Q network (DDQN-SSQN) algorithm that combines state splitting and optimal state to complete the optimal path planning of UAV based on the...
Autores principales: | Zhao, Jinduo, Gan, Zhigao, Liang, Jiakai, Wang, Chao, Yue, Keqiang, Li, Wenjun, Li, Yilin, Li, Ruixue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778616/ https://www.ncbi.nlm.nih.gov/pubmed/36554172 http://dx.doi.org/10.3390/e24121767 |
Ejemplares similares
-
Q-learning-based UAV-mounted base station positioning in a disaster scenario for connectivity to the users located at unknown positions
por: Mandloi, Dilip, et al.
Publicado: (2023) -
Attention-Based Convolutional Neural Network for Ingredients Identification
por: Chen, Shi, et al.
Publicado: (2023) -
A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation
por: Liang, Jiakai, et al.
Publicado: (2022) -
Using Smartphones to Locate Trapped Victims in Disasters
por: Tai, Yenpo, et al.
Publicado: (2022) -
Deep Reinforcement Learning Based Decision Making for Complex Jamming Waveforms
por: Xu, Yuting, et al.
Publicado: (2022)