Cargando…

Comparative Characterization of Key Volatile Compounds in Slow- and Fast-Growing Duck Raw Meat Based on Widely Targeted Metabolomics

The volatile aroma compounds in raw duck meat strongly affect consumers’ purchase decisions and they vary among breeds with different growth rates. In this study, slow-growing (SG) Liancheng White and fast-growing (FG) Cherry Valley ducks were selected, and their volatile compounds were characterize...

Descripción completa

Detalles Bibliográficos
Autores principales: Weng, Kaiqi, Song, Lina, Bao, Qiang, Cao, Zhengfeng, Zhang, Yu, Zhang, Yang, Chen, Guohong, Xu, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778640/
https://www.ncbi.nlm.nih.gov/pubmed/36553717
http://dx.doi.org/10.3390/foods11243975
Descripción
Sumario:The volatile aroma compounds in raw duck meat strongly affect consumers’ purchase decisions and they vary among breeds with different growth rates. In this study, slow-growing (SG) Liancheng White and fast-growing (FG) Cherry Valley ducks were selected, and their volatile compounds were characterized using electric nose and gas chromatography-mass spectrometry. Furthermore, a widely targeted metabolomics approach was used to investigate the metabolites associated with volatile compounds. The results showed that hexanal, nonanal, octanal, heptanal, and 2-pentylfuran were abundantly present in duck meat, regardless of the breed. The higher nonanal and octanal rates contributed to the fatty and fruity aroma in SG meat than FG meat, while FG meat had a mushroom note resulting from higher octenol. Furthermore, widely targeted metabolomics showed a lower carnitine content in SG meat, which might promote lipid deposition to produce more octanal and nonanal. Higher sugar and amino acid contents led to a meaty aroma, whereas more trimethylamine N-oxide may generate a fishy note in SG meat. Taken together, this study characterized the raw duck meat aroma and provided the basic mechanism of the formation of the key volatile compound.