Cargando…
The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes
Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778895/ https://www.ncbi.nlm.nih.gov/pubmed/36555387 http://dx.doi.org/10.3390/ijms232415743 |
_version_ | 1784856475931246592 |
---|---|
author | Wronka, Magdalena Krzemińska, Julia Młynarska, Ewelina Rysz, Jacek Franczyk, Beata |
author_facet | Wronka, Magdalena Krzemińska, Julia Młynarska, Ewelina Rysz, Jacek Franczyk, Beata |
author_sort | Wronka, Magdalena |
collection | PubMed |
description | Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activation of the hexosamine pathway, nuclear factor-κB (Nf-κb), p38 mitogen-activated protein kinase (p38 MAPK), c-jun NH2 terminal kinase/stress-activated protein kinase (JNK/SAPK) or toll-like receptors (TLRs), leads to pancreatic β-cell dysfunction. However, there is also the protective mechanism that counteracts oxidative stress and inflammation in diabetes, mitophagy, which is a mitochondrial autophagy. An important part of the strategy to control diabetes is to lead a healthy lifestyle based on, among other things, regular physical activity, giving up smoking, eating a balanced diet containing ingredients with antioxidant potential, including vegetables and fruits, and using hypoglycemic pharmacotherapy. Tobacco smoke is a recognized modifiable risk factor for many diseases including diabetes, and it has been shown that the risk of the disease increases in proportion to the intensity of smoking. Physical activity as another component of therapy can effectively reduce glucose fluctuations, and high intensity interval exercise appears to have the most beneficial effect. A proper diet not only increases cellular sensitivity to insulin, but is also able to reduce inflammation and oxidative stress. Pharmacotherapy for diabetes can also affect oxidative stress and inflammation. Some oral drugs, such as metformin, pioglitazone, vildagliptin, liraglutide, and exenatide, cause a reduction in markers of oxidative stress and/or inflammation, while the new drug Imeglimin reverses pancreatic β-cell dysfunction. In studies of sitagliptin, vildagliptin and exenatide, beneficial effects on oxidative stress and inflammation were achieved by, among other things, reducing glycemic excursions. For insulin therapy, no corresponding correlation was observed. Insulin did not reduce oxidative stress parameters. There was no correlation between glucose variability and oxidative stress in patients on insulin therapy. The data used in this study were obtained by searching PubMed online databases, taking into account recent studies. |
format | Online Article Text |
id | pubmed-9778895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97788952022-12-23 The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes Wronka, Magdalena Krzemińska, Julia Młynarska, Ewelina Rysz, Jacek Franczyk, Beata Int J Mol Sci Review Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activation of the hexosamine pathway, nuclear factor-κB (Nf-κb), p38 mitogen-activated protein kinase (p38 MAPK), c-jun NH2 terminal kinase/stress-activated protein kinase (JNK/SAPK) or toll-like receptors (TLRs), leads to pancreatic β-cell dysfunction. However, there is also the protective mechanism that counteracts oxidative stress and inflammation in diabetes, mitophagy, which is a mitochondrial autophagy. An important part of the strategy to control diabetes is to lead a healthy lifestyle based on, among other things, regular physical activity, giving up smoking, eating a balanced diet containing ingredients with antioxidant potential, including vegetables and fruits, and using hypoglycemic pharmacotherapy. Tobacco smoke is a recognized modifiable risk factor for many diseases including diabetes, and it has been shown that the risk of the disease increases in proportion to the intensity of smoking. Physical activity as another component of therapy can effectively reduce glucose fluctuations, and high intensity interval exercise appears to have the most beneficial effect. A proper diet not only increases cellular sensitivity to insulin, but is also able to reduce inflammation and oxidative stress. Pharmacotherapy for diabetes can also affect oxidative stress and inflammation. Some oral drugs, such as metformin, pioglitazone, vildagliptin, liraglutide, and exenatide, cause a reduction in markers of oxidative stress and/or inflammation, while the new drug Imeglimin reverses pancreatic β-cell dysfunction. In studies of sitagliptin, vildagliptin and exenatide, beneficial effects on oxidative stress and inflammation were achieved by, among other things, reducing glycemic excursions. For insulin therapy, no corresponding correlation was observed. Insulin did not reduce oxidative stress parameters. There was no correlation between glucose variability and oxidative stress in patients on insulin therapy. The data used in this study were obtained by searching PubMed online databases, taking into account recent studies. MDPI 2022-12-12 /pmc/articles/PMC9778895/ /pubmed/36555387 http://dx.doi.org/10.3390/ijms232415743 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Wronka, Magdalena Krzemińska, Julia Młynarska, Ewelina Rysz, Jacek Franczyk, Beata The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title | The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title_full | The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title_fullStr | The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title_full_unstemmed | The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title_short | The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes |
title_sort | influence of lifestyle and treatment on oxidative stress and inflammation in diabetes |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778895/ https://www.ncbi.nlm.nih.gov/pubmed/36555387 http://dx.doi.org/10.3390/ijms232415743 |
work_keys_str_mv | AT wronkamagdalena theinfluenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT krzeminskajulia theinfluenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT młynarskaewelina theinfluenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT ryszjacek theinfluenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT franczykbeata theinfluenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT wronkamagdalena influenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT krzeminskajulia influenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT młynarskaewelina influenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT ryszjacek influenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes AT franczykbeata influenceoflifestyleandtreatmentonoxidativestressandinflammationindiabetes |