Cargando…
Advanced machine learning algorithms to evaluate the effects of the raw ingredients on flowability and compressive strength of ultra-high-performance concrete
The estimation of concrete characteristics through artificial intelligence techniques is come out to be an effective way in the construction sector in terms of time and cost conservation. The manufacturing of Ultra-High-Performance Concrete (UHPC) is based on combining numerous ingredients, resultin...
Autores principales: | Qian, Yunfeng, Sufian, Muhammad, Accouche, Oussama, Azab, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779036/ https://www.ncbi.nlm.nih.gov/pubmed/36548370 http://dx.doi.org/10.1371/journal.pone.0278161 |
Ejemplares similares
-
Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence
por: Zheng, Dong, et al.
Publicado: (2022) -
Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning
por: Shen, Zhongjie, et al.
Publicado: (2022) -
Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques
por: Li, Yongjian, et al.
Publicado: (2022) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021)