Cargando…
Air Quality Modeling with the Use of Regression Neural Networks
Air quality is assessed on the basis of air monitoring data. Monitoring data are often not complete enough to carry out an air quality assessment. To fill the measurement gaps, predictive models can be used, which enable the approximation of missing data. Prediction models use historical data and re...
Autores principales: | Hoffman, Szymon, Filak, Mariusz, Jasiński, Rafał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779138/ https://www.ncbi.nlm.nih.gov/pubmed/36554373 http://dx.doi.org/10.3390/ijerph192416494 |
Ejemplares similares
-
Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector
por: Liu, Bing, et al.
Publicado: (2021) -
A data calibration method for micro air quality detectors based on a LASSO regression and NARX neural network combined model
por: Liu, Bing, et al.
Publicado: (2021) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment
por: Stępień, Igor, et al.
Publicado: (2021) -
Sound Source Localization Using a Convolutional Neural Network and Regression Model
por: Tan, Tan-Hsu, et al.
Publicado: (2021)