Cargando…
CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems
Urban rail transit (URT) is a key mode of public transport, which serves for greatest user demand. Short-term passenger flow prediction aims to improve management validity and avoid extravagance of public transport resources. In order to anticipate passenger flow for URT, managing nonlinearity, corr...
Autores principales: | Zeng, Lu, Li, Zinuo, Yang, Jie, Xu, Xinyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779204/ https://www.ncbi.nlm.nih.gov/pubmed/36554314 http://dx.doi.org/10.3390/ijerph192416433 |
Ejemplares similares
-
Vulnerability Analysis and Passenger Source Prediction in Urban Rail Transit Networks
por: Wang, Junjie, et al.
Publicado: (2013) -
The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory
por: Li, Man, et al.
Publicado: (2017) -
The Impact of Urban Rail Transit Epidemic Prevention Measures on Passengers’ Safety Perception
por: Ding, Pengxiang, et al.
Publicado: (2023) -
Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model
por: Chen, Liyue, et al.
Publicado: (2022) -
A Distributionally Robust Optimization Method for Passenger Flow Control Strategy and Train Scheduling on an Urban Rail Transit Line
por: Lu, Yahan, et al.
Publicado: (2022)