Cargando…
NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre- and Post-Menopausal Oestrogen Levels in Breast Cancer
Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779285/ https://www.ncbi.nlm.nih.gov/pubmed/36555293 http://dx.doi.org/10.3390/ijms232415641 |
Sumario: | Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models simulating pre- and post-menopausal bone microenvironments were used to evaluate if PEDF regulates pro-metastatic biomarker expression and downstream functional effects on BC cells. PEDF treatment reduced phosphorylated-nuclear factor-κB p65 subunit (p-NFκB-p65), tumour necrosis factor-α (TNFα), C-X-C chemokine receptor type-4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) in oestrogen receptor (ER)+/human epidermal growth factor receptor-2 (HER2)- BC cells under post-menopausal oestrogen conditions. In triple negative BC (TNBC) cells, PEDF treatment reduced pNFκB-p65 and uPAR expression under pre-menopausal oestrogen conditions. A potential reciprocal regulatory axis between p-NFκB-65 and PEDF in BC was identified, which was BC subtype-specific and differentially regulated by menopausal oestrogen conditions. The effects of PEDF treatment and NFκB inhibition on BC cell function under menopausal conditions were also compared. PEDF treatment exhibited superior anti-viability effects, while combined PEDF and NFκB-p65 inhibitor treatment was superior in reducing BC cell colony formation in a subtype-specific manner. Lastly, immunohistochemical evaluation of p-NFκB-p65 and PEDF expression in human BC and bone metastases specimens revealed an inverse correlation between nuclear PEDF and NFκB expression in bone metastases. We propose that menopausal status is associated with a PEDF/NFκB reciprocal regulatory axis, which drives PEDF expression and anti-metastatic function in a subtype-specific manner. Altogether, our findings identify pre-menopausal TNBC and post-menopausal ER+/HER2- BC patients as target populations for future PEDF research. |
---|