Cargando…

Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters

Travel mode choice (TMC) prediction is crucial for transportation planning. Most previous studies have focused on TMC in adults, whereas predicting TMC in children has received less attention. On the other hand, previous children’s TMC prediction studies have generally focused on home-to-school TMC....

Descripción completa

Detalles Bibliográficos
Autores principales: Naseri, Hamed, Waygood, Edward Owen Douglas, Wang, Bobin, Patterson, Zachary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779602/
https://www.ncbi.nlm.nih.gov/pubmed/36554720
http://dx.doi.org/10.3390/ijerph192416844
_version_ 1784856649726427136
author Naseri, Hamed
Waygood, Edward Owen Douglas
Wang, Bobin
Patterson, Zachary
author_facet Naseri, Hamed
Waygood, Edward Owen Douglas
Wang, Bobin
Patterson, Zachary
author_sort Naseri, Hamed
collection PubMed
description Travel mode choice (TMC) prediction is crucial for transportation planning. Most previous studies have focused on TMC in adults, whereas predicting TMC in children has received less attention. On the other hand, previous children’s TMC prediction studies have generally focused on home-to-school TMC. Hence, LIGHT GRADIENT BOOSTING MACHINE (LGBM), as a robust machine learning method, is applied to predict children’s TMC and detect its determinants since it can present the relative influence of variables on children’s TMC. Nonetheless, the use of machine learning introduces its own challenges. First, these methods and their performance are highly dependent on the choice of “hyperparameters”. To solve this issue, a novel technique, called multi-objective hyperparameter tuning (MOHPT), is proposed to select hyperparameters using a multi-objective metaheuristic optimization framework. The performance of the proposed technique is compared with conventional hyperparameters tuning methods, including random search, grid search, and “Hyperopt”. Second, machine learning methods are black-box tools and hard to interpret. To overcome this deficiency, the most influential parameters on children’s TMC are determined by LGBM, and logistic regression is employed to investigate how these parameters influence children’s TMC. The results suggest that MOHPT outperforms conventional methods in tuning hyperparameters on the basis of prediction accuracy and computational cost. Trip distance, “walkability” and “bikeability” of the origin location, age, and household income are principal determinants of child mode choice. Furthermore, older children, those who live in walkable and bikeable areas, those belonging low-income groups, and short-distance travelers are more likely to travel by sustainable transportation modes.
format Online
Article
Text
id pubmed-9779602
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97796022022-12-23 Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters Naseri, Hamed Waygood, Edward Owen Douglas Wang, Bobin Patterson, Zachary Int J Environ Res Public Health Article Travel mode choice (TMC) prediction is crucial for transportation planning. Most previous studies have focused on TMC in adults, whereas predicting TMC in children has received less attention. On the other hand, previous children’s TMC prediction studies have generally focused on home-to-school TMC. Hence, LIGHT GRADIENT BOOSTING MACHINE (LGBM), as a robust machine learning method, is applied to predict children’s TMC and detect its determinants since it can present the relative influence of variables on children’s TMC. Nonetheless, the use of machine learning introduces its own challenges. First, these methods and their performance are highly dependent on the choice of “hyperparameters”. To solve this issue, a novel technique, called multi-objective hyperparameter tuning (MOHPT), is proposed to select hyperparameters using a multi-objective metaheuristic optimization framework. The performance of the proposed technique is compared with conventional hyperparameters tuning methods, including random search, grid search, and “Hyperopt”. Second, machine learning methods are black-box tools and hard to interpret. To overcome this deficiency, the most influential parameters on children’s TMC are determined by LGBM, and logistic regression is employed to investigate how these parameters influence children’s TMC. The results suggest that MOHPT outperforms conventional methods in tuning hyperparameters on the basis of prediction accuracy and computational cost. Trip distance, “walkability” and “bikeability” of the origin location, age, and household income are principal determinants of child mode choice. Furthermore, older children, those who live in walkable and bikeable areas, those belonging low-income groups, and short-distance travelers are more likely to travel by sustainable transportation modes. MDPI 2022-12-15 /pmc/articles/PMC9779602/ /pubmed/36554720 http://dx.doi.org/10.3390/ijerph192416844 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Naseri, Hamed
Waygood, Edward Owen Douglas
Wang, Bobin
Patterson, Zachary
Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title_full Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title_fullStr Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title_full_unstemmed Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title_short Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters
title_sort application of machine learning to child mode choice with a novel technique to optimize hyperparameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779602/
https://www.ncbi.nlm.nih.gov/pubmed/36554720
http://dx.doi.org/10.3390/ijerph192416844
work_keys_str_mv AT naserihamed applicationofmachinelearningtochildmodechoicewithanoveltechniquetooptimizehyperparameters
AT waygoodedwardowendouglas applicationofmachinelearningtochildmodechoicewithanoveltechniquetooptimizehyperparameters
AT wangbobin applicationofmachinelearningtochildmodechoicewithanoveltechniquetooptimizehyperparameters
AT pattersonzachary applicationofmachinelearningtochildmodechoicewithanoveltechniquetooptimizehyperparameters