Cargando…

Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram

Detalles Bibliográficos
Autores principales: van de Leur, Rutger R, Hassink, Rutger J, van Es, René
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779792/
https://www.ncbi.nlm.nih.gov/pubmed/36710900
http://dx.doi.org/10.1093/ehjdh/ztac063
_version_ 1784856696477188096
author van de Leur, Rutger R
Hassink, Rutger J
van Es, René
author_facet van de Leur, Rutger R
Hassink, Rutger J
van Es, René
author_sort van de Leur, Rutger R
collection PubMed
description
format Online
Article
Text
id pubmed-9779792
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-97797922023-01-27 Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram van de Leur, Rutger R Hassink, Rutger J van Es, René Eur Heart J Digit Health Letter to the Editor Oxford University Press 2022-10-26 /pmc/articles/PMC9779792/ /pubmed/36710900 http://dx.doi.org/10.1093/ehjdh/ztac063 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Letter to the Editor
van de Leur, Rutger R
Hassink, Rutger J
van Es, René
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title_full Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title_fullStr Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title_full_unstemmed Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title_short Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
title_sort variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
topic Letter to the Editor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779792/
https://www.ncbi.nlm.nih.gov/pubmed/36710900
http://dx.doi.org/10.1093/ehjdh/ztac063
work_keys_str_mv AT vandeleurrutgerr variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram
AT hassinkrutgerj variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram
AT vanesrene variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram