Cargando…
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779792/ https://www.ncbi.nlm.nih.gov/pubmed/36710900 http://dx.doi.org/10.1093/ehjdh/ztac063 |
_version_ | 1784856696477188096 |
---|---|
author | van de Leur, Rutger R Hassink, Rutger J van Es, René |
author_facet | van de Leur, Rutger R Hassink, Rutger J van Es, René |
author_sort | van de Leur, Rutger R |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9779792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97797922023-01-27 Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram van de Leur, Rutger R Hassink, Rutger J van Es, René Eur Heart J Digit Health Letter to the Editor Oxford University Press 2022-10-26 /pmc/articles/PMC9779792/ /pubmed/36710900 http://dx.doi.org/10.1093/ehjdh/ztac063 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Letter to the Editor van de Leur, Rutger R Hassink, Rutger J van Es, René Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title | Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title_full | Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title_fullStr | Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title_full_unstemmed | Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title_short | Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
title_sort | variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram |
topic | Letter to the Editor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779792/ https://www.ncbi.nlm.nih.gov/pubmed/36710900 http://dx.doi.org/10.1093/ehjdh/ztac063 |
work_keys_str_mv | AT vandeleurrutgerr variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram AT hassinkrutgerj variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram AT vanesrene variationalautoencodersimproveexplainabilityovercurrentlyemployedheatmapmethodsfordeeplearningbasedinterpretationoftheelectrocardiogram |