Cargando…
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
Autores principales: | van de Leur, Rutger R, Hassink, Rutger J, van Es, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779792/ https://www.ncbi.nlm.nih.gov/pubmed/36710900 http://dx.doi.org/10.1093/ehjdh/ztac063 |
Ejemplares similares
-
Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders( )
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Electrocardiogram Devices for Home Use: Technological and Clinical Scoping Review
por: Zepeda-Echavarria, Alejandra, et al.
Publicado: (2023) -
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
por: Vranken, Jeroen F, et al.
Publicado: (2021) -
Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks( )
por: Sammani, Arjan, et al.
Publicado: (2022) -
Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning: Proof-of-Concept in Phospholamban Gene Mutation Carriers
por: van de Leur, Rutger R., et al.
Publicado: (2021)