Cargando…
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts
AIMS: Deep learning has dominated predictive modelling across different fields, but in medicine it has been met with mixed reception. In clinical practice, simple, statistical models and risk scores continue to inform cardiovascular disease risk predictions. This is due in part to the knowledge gap...
Autores principales: | Li, Yikuan, Salimi-Khorshidi, Gholamreza, Rao, Shishir, Canoy, Dexter, Hassaine, Abdelaali, Lukasiewicz, Thomas, Rahimi, Kazem, Mamouei, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779795/ https://www.ncbi.nlm.nih.gov/pubmed/36710898 http://dx.doi.org/10.1093/ehjdh/ztac061 |
Ejemplares similares
-
Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records
por: Li, Yikuan, et al.
Publicado: (2023) -
Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Li, Yikuan, et al.
Publicado: (2021) -
Publisher Correction: Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Li, Yikuan, et al.
Publicado: (2021) -
Systolic Blood Pressure and Cardiovascular Risk in Patients With Diabetes: A Prospective Cohort Study
por: Rao, Shishir, et al.
Publicado: (2022) -
Stratification of diabetes in the context of comorbidities, using representation learning and topological data analysis
por: Wamil, Malgorzata, et al.
Publicado: (2023)