Cargando…
Can artificial intelligence prediction of successful atrial fibrillation catheter ablation therapy be interpretable?
BACKGROUND: Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ∼50% post-ablat...
Autores principales: | Ogbomo-Harmitt, S, Muffoletto, M, Zeidan, A, Qureshi, A, King, A, Aslanidi, O |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779900/ http://dx.doi.org/10.1093/ehjdh/ztac076.2775 |
Ejemplares similares
-
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
por: Ogbomo-Harmitt, Shaheim, et al.
Publicado: (2023) -
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Corrigendum: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning
por: Muffoletto, Marica, et al.
Publicado: (2021) -
Large Circular Ring Catheter Ablation Versus Anatomically Guided Ablation of Atrial Fibrillation: Back to the Future for Successful Catheter Ablation of Atrial Fibrillation?
por: Pak, Hui-Nam
Publicado: (2011)