Cargando…

Improved pre-test likelihood estimation of coronary artery disease using phonocardiography

AIMS: Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsen, Bjarke Skogstad, Winther, Simon, Nissen, Louise, Diederichsen, Axel, Bøttcher, Morten, Renker, Matthias, Struijk, Johannes Jan, Christensen, Mads Græsbøll, Schmidt, Samuel Emil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779903/
https://www.ncbi.nlm.nih.gov/pubmed/36710896
http://dx.doi.org/10.1093/ehjdh/ztac057
Descripción
Sumario:AIMS: Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical likelihood, RF-CL) showed significantly improved rule-out capacity over the ESC2019 model. The aim of the current study was to investigate if the addition of acoustic features to the RF-CL model could improve the rule-out potential of the best performing clinical risk factor models. METHODS AND RESULTS: Four studies with heart sound recordings from 2222 patients were pooled and distributed into two data sets: training and test. From a feature bank of 40 acoustic features, a forward-selection technique was used to select three features that were added to the RF-CL model. Using a cutoff of 5% predicted risk of CAD, the developed acoustic-weighted clinical likelihood (A-CL) model showed significantly (P < 0.05) higher specificity of 48.6% than the RF-CL model (specificity of 41.5%) and ESC 2019 model (specificity of 6.9%) while having the same sensitivity of 84.9% as the RF-CL model. Area under the curve of the receiver operating characteristic for the three models was 72.5% for ESC2019, 76.7% for RF-CL, and 79.5% for A-CL. CONCLUSION: The proposed A-CL model offers significantly improved rule-out capacity over the ESC2019 model and showed better overall performance than the RF-CL model. The addition of acoustic features to the RF-CL model was shown to significantly improve early risk stratification of symptomatic patients suspected of having stable CAD.