Cargando…
Interpretable Machine Learning to Optimize Early In-Hospital Mortality Prediction for Elderly Patients with Sepsis: A Discovery Study
Sepsis-related mortality rates are high among elderly patients, especially those in intensive care units (ICUs). Early prediction of the prognosis of sepsis is critical, as prompt and effective treatment can improve prognosis. Researchers have predicted mortality and the development of sepsis using...
Autores principales: | Ke, Xiaowei, Zhang, Fangjie, Huang, Guoqing, Wang, Aimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9779998/ https://www.ncbi.nlm.nih.gov/pubmed/36570336 http://dx.doi.org/10.1155/2022/4820464 |
Ejemplares similares
-
Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
por: Hu, Chang, et al.
Publicado: (2022) -
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
por: Kong, Guilan, et al.
Publicado: (2020) -
Developing an Interpretable Machine Learning Model to Predict in-Hospital Mortality in Sepsis Patients: A Retrospective Temporal Validation Study
por: Li, Shuhe, et al.
Publicado: (2023) -
Clinical Features and Etiology of Musculoskeletal Infection with or without Sepsis in the Emergency Department
por: Zhang, Juan, et al.
Publicado: (2021) -
Development and deployment of interpretable machine-learning model for predicting in-hospital mortality in elderly patients with acute kidney disease
por: Li, Mingxia, et al.
Publicado: (2022)