Cargando…
Towards a soft three-level voting model (Soft T-LVM) for fake news detection
Fake news has a worldwide impact and the potential to change political scenarios and human behavior, especially in a critical time like the COVID-19 pandemic. This work suggests a Soft Three-Level Voting Model (Soft T-LVM) for automatically classifying COVID-19 fake news. We train different individu...
Autores principales: | Jlifi, Boutheina, Sakrani, Chayma, Duvallet, Claude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780098/ https://www.ncbi.nlm.nih.gov/pubmed/36575748 http://dx.doi.org/10.1007/s10844-022-00769-7 |
Ejemplares similares
-
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Fighting the Fake: A Forensic Linguistic Analysis to Fake News Detection
por: Sousa-Silva, Rui
Publicado: (2022) -
Fake news stance detection using selective features and FakeNET
por: Aljrees, Turki, et al.
Publicado: (2023) -
Towards COVID-19 fake news detection using transformer-based models
por: Alghamdi, Jawaher, et al.
Publicado: (2023) -
A systematic literature review and existing challenges toward fake news detection models
por: Nirav Shah, Minal, et al.
Publicado: (2022)