Cargando…
Neural Inverse Design of Nanostructures (NIDN)
In the recent decade, computational tools have become central in material design, allowing rapid development cycles at reduced costs. Machine learning tools are especially on the rise in photonics. However, the inversion of the Maxwell equations needed for the design is particularly challenging from...
Autores principales: | Gómez, Pablo, Toftevaag, Håvard Hem, Bogen-Storø, Torbjørn, Aranguren van Egmond, Derek, Llorens, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780235/ https://www.ncbi.nlm.nih.gov/pubmed/36550167 http://dx.doi.org/10.1038/s41598-022-26312-w |
Ejemplares similares
-
Photolithographic realization of target nanostructures in 3D space by inverse design of phase modulation
por: Nam, Sang-Hyeon, et al.
Publicado: (2022) -
Inverse design of porous materials using artificial neural networks
por: Kim, Baekjun, et al.
Publicado: (2020) -
Comparison of Different Neural Network Architectures
for Plasmonic Inverse Design
por: Wu, Qingxin, et al.
Publicado: (2021) -
Inverse design of glass structure with deep graph neural networks
por: Wang, Qi, et al.
Publicado: (2021) -
Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks
por: Yang, Yuming, et al.
Publicado: (2023)