Cargando…

Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach

Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Välikangas, Tommi, Suomi, Tomi, Chandler, Courtney E., Scott, Alison J., Tran, Bao Q., Ernst, Robert K., Goodlett, David R., Elo, Laura L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780321/
https://www.ncbi.nlm.nih.gov/pubmed/36550114
http://dx.doi.org/10.1038/s41467-022-35564-z
_version_ 1784856812739100672
author Välikangas, Tommi
Suomi, Tomi
Chandler, Courtney E.
Scott, Alison J.
Tran, Bao Q.
Ernst, Robert K.
Goodlett, David R.
Elo, Laura L.
author_facet Välikangas, Tommi
Suomi, Tomi
Chandler, Courtney E.
Scott, Alison J.
Tran, Bao Q.
Ernst, Robert K.
Goodlett, David R.
Elo, Laura L.
author_sort Välikangas, Tommi
collection PubMed
description Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, and has only few time points and biological replicates. To address this need, we provide a comprehensive evaluation of several existing differential expression methods for high-throughput longitudinal omics data and introduce a Robust longitudinal Differential Expression (RolDE) approach. The methods are evaluated using over 3000 semi-simulated spike-in proteomics datasets and three large experimental datasets. In the comparisons, RolDE performs overall best; it is most tolerant to missing values, displays good reproducibility and is the top method in ranking the results in a biologically meaningful way. Furthermore, RolDE is suitable for different types of data with typically unknown patterns in longitudinal expression and can be applied by non-experienced users.
format Online
Article
Text
id pubmed-9780321
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97803212022-12-24 Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach Välikangas, Tommi Suomi, Tomi Chandler, Courtney E. Scott, Alison J. Tran, Bao Q. Ernst, Robert K. Goodlett, David R. Elo, Laura L. Nat Commun Article Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, and has only few time points and biological replicates. To address this need, we provide a comprehensive evaluation of several existing differential expression methods for high-throughput longitudinal omics data and introduce a Robust longitudinal Differential Expression (RolDE) approach. The methods are evaluated using over 3000 semi-simulated spike-in proteomics datasets and three large experimental datasets. In the comparisons, RolDE performs overall best; it is most tolerant to missing values, displays good reproducibility and is the top method in ranking the results in a biologically meaningful way. Furthermore, RolDE is suitable for different types of data with typically unknown patterns in longitudinal expression and can be applied by non-experienced users. Nature Publishing Group UK 2022-12-22 /pmc/articles/PMC9780321/ /pubmed/36550114 http://dx.doi.org/10.1038/s41467-022-35564-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Välikangas, Tommi
Suomi, Tomi
Chandler, Courtney E.
Scott, Alison J.
Tran, Bao Q.
Ernst, Robert K.
Goodlett, David R.
Elo, Laura L.
Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title_full Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title_fullStr Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title_full_unstemmed Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title_short Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
title_sort benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780321/
https://www.ncbi.nlm.nih.gov/pubmed/36550114
http://dx.doi.org/10.1038/s41467-022-35564-z
work_keys_str_mv AT valikangastommi benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT suomitomi benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT chandlercourtneye benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT scottalisonj benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT tranbaoq benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT ernstrobertk benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT goodlettdavidr benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach
AT elolaural benchmarkingtoolsfordetectinglongitudinaldifferentialexpressioninproteomicsdataallowsestablishingarobustreproducibilityoptimizationregressionapproach