Cargando…
Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach
Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, a...
Autores principales: | Välikangas, Tommi, Suomi, Tomi, Chandler, Courtney E., Scott, Alison J., Tran, Bao Q., Ernst, Robert K., Goodlett, David R., Elo, Laura L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780321/ https://www.ncbi.nlm.nih.gov/pubmed/36550114 http://dx.doi.org/10.1038/s41467-022-35564-z |
Ejemplares similares
-
A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation
por: Välikangas, Tommi, et al.
Publicado: (2017) -
A systematic evaluation of normalization methods in quantitative label-free proteomics
por: Välikangas, Tommi, et al.
Publicado: (2016) -
COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts
por: Välikangas, Tommi, et al.
Publicado: (2022) -
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Suomi, Tomi, et al.
Publicado: (2017) -
ROTS: An R package for reproducibility-optimized statistical testing
por: Suomi, Tomi, et al.
Publicado: (2017)