Cargando…

Venom composition and pain-causing toxins of the Australian great carpenter bee Xylocopa aruana

Most species of bee are capable of delivering a defensive sting which is often painful. A solitary lifestyle is the ancestral state of bees and most extant species are solitary, but information on bee venoms comes predominantly from studies on eusocial species. In this study we investigated the veno...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Naiqi, Szanto, Tibor G., He, Jia, Schroeder, Christina I., Walker, Andrew A., Deuis, Jennifer R., Vetter, Irina, Panyi, György, King, Glenn F., Robinson, Samuel D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780326/
https://www.ncbi.nlm.nih.gov/pubmed/36550366
http://dx.doi.org/10.1038/s41598-022-26867-8
Descripción
Sumario:Most species of bee are capable of delivering a defensive sting which is often painful. A solitary lifestyle is the ancestral state of bees and most extant species are solitary, but information on bee venoms comes predominantly from studies on eusocial species. In this study we investigated the venom composition of the Australian great carpenter bee, Xylocopa aruana Ritsema, 1876. We show that the venom is relatively simple, composed mainly of one small amphipathic peptide (XYTX(1)-Xa1a), with lesser amounts of an apamin homologue (XYTX(2)-Xa2a) and a venom phospholipase-A(2) (PLA(2)). XYTX(1)-Xa1a is homologous to, and shares a similar mode-of-action to melittin and the bombilitins, the major components of the venoms of the eusocial Apis mellifera (Western honeybee) and Bombus spp. (bumblebee), respectively. XYTX(1)-Xa1a and melittin directly activate mammalian sensory neurons and cause spontaneous pain behaviours in vivo, effects which are potentiated in the presence of venom PLA(2). The apamin-like peptide XYTX(2)-Xa2a was a relatively weak blocker of small conductance calcium-activated potassium (K(Ca)) channels and, like A. mellifera apamin and mast cell-degranulating peptide, did not contribute to pain behaviours in mice. While the composition and mode-of-action of the venom of X. aruana are similar to that of A. mellifera, the greater potency, on mammalian sensory neurons, of the major pain-causing component in A. mellifera venom may represent an adaptation to the distinct defensive pressures on eusocial Apidae.