Cargando…
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
With the development of high-throughput sequencing technology, the scale of single-cell RNA sequencing (scRNA-seq) data has surged. Its data are typically high-dimensional, with high dropout noise and high sparsity. Therefore, gene imputation and cell clustering analysis of scRNA-seq data is increas...
Autores principales: | Feng, Xiang, Fang, Fang, Long, Haixia, Zeng, Rao, Yao, Yuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780469/ https://www.ncbi.nlm.nih.gov/pubmed/36568390 http://dx.doi.org/10.3389/fgene.2022.1003711 |
Ejemplares similares
-
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021) -
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022) -
A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
por: Luo, Zixiang, et al.
Publicado: (2021)