Cargando…
Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis
Pyroptosis is defined as inflammation-induced programmed cell death. However, gene expression levels related to pyroptosis and their role in neuropathic pain (NP) remain unclear. The present study aimed to develop and validate an NP-predictive signature based on the genes associated with pyroptosis....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780700/ https://www.ncbi.nlm.nih.gov/pubmed/36588812 http://dx.doi.org/10.3892/etm.2022.11745 |
_version_ | 1784856896337870848 |
---|---|
author | Li, Xin Zhang, Di Shi, Huimei Jing, Bei Chen, Zhenni Zheng, Yachun Chang, Shiquan Gao, Li Zhao, Guoping |
author_facet | Li, Xin Zhang, Di Shi, Huimei Jing, Bei Chen, Zhenni Zheng, Yachun Chang, Shiquan Gao, Li Zhao, Guoping |
author_sort | Li, Xin |
collection | PubMed |
description | Pyroptosis is defined as inflammation-induced programmed cell death. However, gene expression levels related to pyroptosis and their role in neuropathic pain (NP) remain unclear. The present study aimed to develop and validate an NP-predictive signature based on the genes associated with pyroptosis. Gene expression level profiles were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis was used to identify the pyroptotic genes most highly associated with NP. NP-related pyroptosis gene signature was constructed using multivariate logistic regression. A rat model of neuropathic pain was established through chronic constriction injury to analyse the inflammatory infiltration and myelin damage around the sciatic nerve, and examine the expression levels of macrophage markers S100 calcium-binding protein β (S100β) and ionized calcium-binding adapter molecule 1 (Iba-1). Finally, flow cytometry analysis was used to examine the lipopolysaccharide (LPS)-induced cell death ratio of RSC96 cells (Schwann cells), while the expression levels of LPS-induced pyroptosis-related genes in RSC96 cells were measured via reverse transcription-quantitative PCR. The results demonstrated that pyroptosis-related genes (gasdermin D, NLR family pyrin domain containing 3, neuronal apoptosis inhibitory protein and NLR family CARD domain containing 4) were identified to increase the risk of NP. NP-related pyroptosis signatures were constructed based on these four genes. Moreover, the high-risk group had a higher level of macrophage infiltration compared with the low-risk group, as determined by the CIBERSORT algorithm. H&E staining results showed that the myelin structure of the sciatic nerve tissue of chronic constriction injury (CCI) rats was destroyed and inflammatory cells infiltrated around neurons. The results of immunohistochemistry showed that compared with in the sham group, the expression levels of Iba-1 and sS100β in the sciatic nerve of the CCI group were increased. Furthermore, the expression levels of cell death and pyroptosis-related genes in Schwann cells induced by LPS were increased compared with in the control group. In conclusion, an NP-related pyroptosis gene signature was constructed based on four pyroptosis-related genes and it was found that the expression of pyroptosis-related genes was upregulated in the early steps of the neuroinflammatory process in RSC96 cells. |
format | Online Article Text |
id | pubmed-9780700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-97807002022-12-29 Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis Li, Xin Zhang, Di Shi, Huimei Jing, Bei Chen, Zhenni Zheng, Yachun Chang, Shiquan Gao, Li Zhao, Guoping Exp Ther Med Articles Pyroptosis is defined as inflammation-induced programmed cell death. However, gene expression levels related to pyroptosis and their role in neuropathic pain (NP) remain unclear. The present study aimed to develop and validate an NP-predictive signature based on the genes associated with pyroptosis. Gene expression level profiles were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis was used to identify the pyroptotic genes most highly associated with NP. NP-related pyroptosis gene signature was constructed using multivariate logistic regression. A rat model of neuropathic pain was established through chronic constriction injury to analyse the inflammatory infiltration and myelin damage around the sciatic nerve, and examine the expression levels of macrophage markers S100 calcium-binding protein β (S100β) and ionized calcium-binding adapter molecule 1 (Iba-1). Finally, flow cytometry analysis was used to examine the lipopolysaccharide (LPS)-induced cell death ratio of RSC96 cells (Schwann cells), while the expression levels of LPS-induced pyroptosis-related genes in RSC96 cells were measured via reverse transcription-quantitative PCR. The results demonstrated that pyroptosis-related genes (gasdermin D, NLR family pyrin domain containing 3, neuronal apoptosis inhibitory protein and NLR family CARD domain containing 4) were identified to increase the risk of NP. NP-related pyroptosis signatures were constructed based on these four genes. Moreover, the high-risk group had a higher level of macrophage infiltration compared with the low-risk group, as determined by the CIBERSORT algorithm. H&E staining results showed that the myelin structure of the sciatic nerve tissue of chronic constriction injury (CCI) rats was destroyed and inflammatory cells infiltrated around neurons. The results of immunohistochemistry showed that compared with in the sham group, the expression levels of Iba-1 and sS100β in the sciatic nerve of the CCI group were increased. Furthermore, the expression levels of cell death and pyroptosis-related genes in Schwann cells induced by LPS were increased compared with in the control group. In conclusion, an NP-related pyroptosis gene signature was constructed based on four pyroptosis-related genes and it was found that the expression of pyroptosis-related genes was upregulated in the early steps of the neuroinflammatory process in RSC96 cells. D.A. Spandidos 2022-12-05 /pmc/articles/PMC9780700/ /pubmed/36588812 http://dx.doi.org/10.3892/etm.2022.11745 Text en Copyright: © Li et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Li, Xin Zhang, Di Shi, Huimei Jing, Bei Chen, Zhenni Zheng, Yachun Chang, Shiquan Gao, Li Zhao, Guoping Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title | Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title_full | Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title_fullStr | Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title_full_unstemmed | Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title_short | Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
title_sort | identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780700/ https://www.ncbi.nlm.nih.gov/pubmed/36588812 http://dx.doi.org/10.3892/etm.2022.11745 |
work_keys_str_mv | AT lixin identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT zhangdi identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT shihuimei identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT jingbei identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT chenzhenni identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT zhengyachun identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT changshiquan identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT gaoli identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis AT zhaoguoping identificationofpyroptosisrelatedgenesinneuropathicpainbasedonbioinformaticsanalysis |