Cargando…
Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review
INTRODUCTION: There was limited evidence on the quality of reporting and methodological quality of prediction models using machine learning methods in preterm birth. This systematic review aimed to assess the reporting quality and risk of bias of a machine learning‐based prediction model in preterm...
Autores principales: | Yang, Qiuyu, Fan, Xia, Cao, Xiao, Hao, Weijie, Lu, Jiale, Wei, Jia, Tian, Jinhui, Yin, Min, Ge, Long |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780725/ https://www.ncbi.nlm.nih.gov/pubmed/36397723 http://dx.doi.org/10.1111/aogs.14475 |
Ejemplares similares
-
Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research
por: Golob, Jonathan L., et al.
Publicado: (2023) -
Risk Scoring Systems for Preterm Birth and Their Performance: A Systematic Review
por: Ferreira, Amaro, et al.
Publicado: (2023) -
Uterocervical angle in predicting spontaneous preterm birth: a systematic review and meta-analysis
por: Goldstein, Michael Jeffrey, et al.
Publicado: (2023) -
Influence of Antiphospholipid Antibody-Associated Thrombophilia on the Risk of Preterm Birth: A Systematic Review
por: Iordache, Olivera, et al.
Publicado: (2023) -
Mental health impact on Black, Asian and Minority Ethnic populations with preterm birth: A systematic review and meta-analysis
por: Delanerolle, Gayathri, et al.
Publicado: (2022)