Cargando…

The Multifaceted Gene 275 Embedded in the PKS-PTS Gene Cluster Was Involved in the Regulation of Arthrobotrisin Biosynthesis, TCA Cycle, and Septa Formation in Nematode-Trapping Fungus Arthrobotrys oligospora

The predominant nematode-trapping fungus Arthrobotrys oligospora harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster AOL_s00215g responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jiao, Wu, Qun-Fu, Li, Shu-Hong, Yan, Jun-Xian, Wu, Li, Cheng, Qian-Yi, He, Zhi-Qiang, Yue, Xu-Tong, Zhang, Ke-Qin, Zhang, Long-Long, Niu, Xue-Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780802/
https://www.ncbi.nlm.nih.gov/pubmed/36547594
http://dx.doi.org/10.3390/jof8121261
Descripción
Sumario:The predominant nematode-trapping fungus Arthrobotrys oligospora harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster AOL_s00215g responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive trap formation, antibacterial activity, and soil colonization. However, the function of one rare gene (AOL_s00215g275 (275)) embedded in the cluster has remained cryptic. Here, we constructed two mutants with the disruption of 275 and the overexpression of 275, respectively, and compared their fungal growth, morphology, resistance to chemical stress, nematicidal activity, transcriptomic and metabolic profiles, and infrastructures, together with binding affinity analysis. Both mutants displayed distinct differences in their TCA cycles, SEC biosynthesis, and endocytosis, combined with abnormal mitochondria, vacuoles, septa formation, and decreased nematicidal activity. Our results suggest that gene 275 might function as a separator and as an integrated gene with multiple potential functions related to three distinct genes encoding the retinoic acid induced-1, cortactin, and vacuolar iron transporter 1 proteins in this nematode-trapping fungus. Our unexpected findings provide insight into the intriguing organization and functions of a rare non-biosynthetic gene in a biosynthetic gene cluster.