Cargando…
A Denoising and Fourier Transformation-Based Spectrograms in ECG Classification Using Convolutional Neural Network
The non-invasive electrocardiogram (ECG) signals are useful in heart condition assessment and are found helpful in diagnosing cardiac diseases. However, traditional ways, i.e., a medical consultation required effort, knowledge, and time to interpret the ECG signals due to the large amount of data an...
Autores principales: | Safdar, Muhammad Farhan, Nowak, Robert Marek, Pałka, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780813/ https://www.ncbi.nlm.nih.gov/pubmed/36559944 http://dx.doi.org/10.3390/s22249576 |
Ejemplares similares
-
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
por: Fotiadou, Eleni, et al.
Publicado: (2020) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network
por: Wang, Tao, et al.
Publicado: (2021)