Cargando…
In Vitro and Pre-Clinical Evaluation of Locally Isolated Phages, vB_Pae_SMP1 and vB_Pae_SMP5, Formulated as Hydrogels against Carbapenem-Resistant Pseudomonas aeruginosa
The inadequate therapeutic opportunities associated with carbapenem-resistant Pseudomonas aeruginosa (CRPA) clinical isolates impose a search for innovative strategies. Therefore, our study aimed to characterize and evaluate two locally isolated phages formulated in a hydrogel, both in vitro and in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780878/ https://www.ncbi.nlm.nih.gov/pubmed/36560763 http://dx.doi.org/10.3390/v14122760 |
Sumario: | The inadequate therapeutic opportunities associated with carbapenem-resistant Pseudomonas aeruginosa (CRPA) clinical isolates impose a search for innovative strategies. Therefore, our study aimed to characterize and evaluate two locally isolated phages formulated in a hydrogel, both in vitro and in vivo, against CRPA clinical isolates. The two phages were characterized by genomic, microscopic, phenotypic characterization, genomic analysis, in vitro and in vivo analysis in a Pseudomonas aeruginosa-infected skin thermal injury rat model. The two siphoviruses belong to class Caudovirectes and were named vB_Pae_SMP1 and vB_Pae_SMP5. Each phage had an icosahedral head of 60 ± 5 nm and a flexible, non-contractile tail of 170 ± 5 nm long, while vB_Pae_SMP5 had an additional base plate containing a 35 nm fiber observed at the end of the tail. The hydrogel was prepared by mixing 5% w/v carboxymethylcellulose (CMC) into the CRPA propagated phage lysate containing phage titer 10(8) PFU/mL, pH of 7.7, and a spreadability coefficient of 25. The groups were treated with either Phage vB_Pae_SMP1, vB_Pae_SMP5, or a two-phage cocktail hydrogel cellular subepidermal granulation tissues with abundant records of fibroblastic activity and mixed inflammatory cell infiltrates and showed 17.2%, 25.8%, and 22.2% records of dermal mature collagen fibers, respectively. In conclusion, phage vB_Pae_SMP1 or vB_Pae_SMP5, or the two-phage cocktails formulated as hydrogels, were able to manage the infection of CRPA in burn wounds, and promoted healing at the injury site, as evidenced by the histopathological examination, as well as a decrease in animal mortality rate. Therefore, these phage formulae can be considered promising for clinical investigation in humans for the management of CRPA-associated skin infections. |
---|