Cargando…

A Mobility Model for a 3D Non-Stationary Geometry Cluster-Based Channel Model for High Speed Trains in MIMO Wireless Channels

During channel modeling for high-mobility channels, such as high-speed train (HST) channels, the velocity of the mobile radio station is assumed to be constant. However, this might not be realistic due to the dynamic movement of the train along the track. Therefore, in this paper, an enhanced Gauss–...

Descripción completa

Detalles Bibliográficos
Autores principales: Assiimwe, Eva, Marye, Yihenew Wondie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780912/
https://www.ncbi.nlm.nih.gov/pubmed/36560388
http://dx.doi.org/10.3390/s222410019
Descripción
Sumario:During channel modeling for high-mobility channels, such as high-speed train (HST) channels, the velocity of the mobile radio station is assumed to be constant. However, this might not be realistic due to the dynamic movement of the train along the track. Therefore, in this paper, an enhanced Gauss–Markov mobility model with a 3D non-stationary geometry based stochastic model (GBSM) for HST in MIMO Wireless Channels is proposed. The non-isotropic scatterers within a cluster are assumed to be around the sphere in which the mobile relay station (MRS) is located. The multi-path components (MPCs) are modeled with varying velocities, whereas the mobility model is a function of time. The MPCs are represented in a death–birth cluster using the Markov process. Furthermore, the channel statistics, i.e., the space-time correlation function, the root-mean-square Doppler shift, and the quasi-stationary interval, are derived from the non-stationary model. The model shows how the quasi-stationary time increases from 0.21 to 0.451 s with a decreasing acceleration of 0.6 to 0.2 m/s [Formula: see text] of the HST. In addition, the impact of the distribution of the angles on the channel statistics is presented. Finally, the simulated results are compared with the measured results. Therefore, there is a close relationship between the proposed model and the measured results, and the model can be used to characterize the channel’s properties.