Cargando…

Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms

Global navigation satellite systems (GNSS) are vital technologies of our age and serve a plethora of industries that rely on precise positioning for automation, efficiency, and safety. Emerging applications of unmanned aerial vehicles (UAV) in critical applications like security, surveillance, criti...

Descripción completa

Detalles Bibliográficos
Autores principales: Hehenberger, Simon P., Elmarissi, Wahid, Caizzone, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780917/
https://www.ncbi.nlm.nih.gov/pubmed/36560013
http://dx.doi.org/10.3390/s22249645
_version_ 1784856946134745088
author Hehenberger, Simon P.
Elmarissi, Wahid
Caizzone, Stefano
author_facet Hehenberger, Simon P.
Elmarissi, Wahid
Caizzone, Stefano
author_sort Hehenberger, Simon P.
collection PubMed
description Global navigation satellite systems (GNSS) are vital technologies of our age and serve a plethora of industries that rely on precise positioning for automation, efficiency, and safety. Emerging applications of unmanned aerial vehicles (UAV) in critical applications like security, surveillance, critical logistics and defense demand precise and robust navigation capabilities even in challenging environments with high multipath or (un-)intended interference. The design of robust GNSS receivers for UAV applications, capable of suppressing interfering signals, is challenging due to the need for multi-antenna systems and the stringent requirements on hardware to be lightweight and miniaturized enough to fit onto small mobile platforms. In order to overcome these limitations, the present article details a four-element wideband antenna array, fitting into a 100 mm diameter footprint. The array is capable to operate across all GNSS frequency bands while incorporating, if needed, a multipath mitigation solution. The antenna design relies on a modular concept with 3D printed Dielectric Resonator Antennas (DRAs) and vertical choke rings. The antenna performance is evaluated in terms of its radiation pattern via installed antenna simulations and measurements in an anechoic chamber. The effect of different installation heights on the antenna pattern is studied. Furthermore, GNSS measurements carried out with the array alone and mounted on the UAV are presented.
format Online
Article
Text
id pubmed-9780917
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97809172022-12-24 Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms Hehenberger, Simon P. Elmarissi, Wahid Caizzone, Stefano Sensors (Basel) Article Global navigation satellite systems (GNSS) are vital technologies of our age and serve a plethora of industries that rely on precise positioning for automation, efficiency, and safety. Emerging applications of unmanned aerial vehicles (UAV) in critical applications like security, surveillance, critical logistics and defense demand precise and robust navigation capabilities even in challenging environments with high multipath or (un-)intended interference. The design of robust GNSS receivers for UAV applications, capable of suppressing interfering signals, is challenging due to the need for multi-antenna systems and the stringent requirements on hardware to be lightweight and miniaturized enough to fit onto small mobile platforms. In order to overcome these limitations, the present article details a four-element wideband antenna array, fitting into a 100 mm diameter footprint. The array is capable to operate across all GNSS frequency bands while incorporating, if needed, a multipath mitigation solution. The antenna design relies on a modular concept with 3D printed Dielectric Resonator Antennas (DRAs) and vertical choke rings. The antenna performance is evaluated in terms of its radiation pattern via installed antenna simulations and measurements in an anechoic chamber. The effect of different installation heights on the antenna pattern is studied. Furthermore, GNSS measurements carried out with the array alone and mounted on the UAV are presented. MDPI 2022-12-09 /pmc/articles/PMC9780917/ /pubmed/36560013 http://dx.doi.org/10.3390/s22249645 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hehenberger, Simon P.
Elmarissi, Wahid
Caizzone, Stefano
Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title_full Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title_fullStr Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title_full_unstemmed Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title_short Design and Installed Performance Analysis of a Miniaturized All-GNSS Bands Antenna Array for Robust Navigation on UAV Platforms
title_sort design and installed performance analysis of a miniaturized all-gnss bands antenna array for robust navigation on uav platforms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780917/
https://www.ncbi.nlm.nih.gov/pubmed/36560013
http://dx.doi.org/10.3390/s22249645
work_keys_str_mv AT hehenbergersimonp designandinstalledperformanceanalysisofaminiaturizedallgnssbandsantennaarrayforrobustnavigationonuavplatforms
AT elmarissiwahid designandinstalledperformanceanalysisofaminiaturizedallgnssbandsantennaarrayforrobustnavigationonuavplatforms
AT caizzonestefano designandinstalledperformanceanalysisofaminiaturizedallgnssbandsantennaarrayforrobustnavigationonuavplatforms