Cargando…

Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings

Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Szafran, Klaudia, Jurak, Małgorzata, Mroczka, Robert, Wiącek, Agnieszka Ewa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780983/
https://www.ncbi.nlm.nih.gov/pubmed/36559307
http://dx.doi.org/10.3390/pharmaceutics14122815
_version_ 1784856962165374976
author Szafran, Klaudia
Jurak, Małgorzata
Mroczka, Robert
Wiącek, Agnieszka Ewa
author_facet Szafran, Klaudia
Jurak, Małgorzata
Mroczka, Robert
Wiącek, Agnieszka Ewa
author_sort Szafran, Klaudia
collection PubMed
description Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir–Blodgett (LB) technique, on activated by air low temperature plasma PET plates (PET(air)). Their topography and surface chemistry were determined with the help of atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), respectively, while wettability was evaluated by the contact angle measurements. Then, the surface free energy and its components were calculated from the Lifshitz–van der Waals/Acid–Base (LWAB) approach. The AFM imaging showed that the Langmuir monolayers were transferred effectively and yielded smoothing of the PET(air) surface. Mass spectrometry confirmed compatibility of the quantitative and qualitative compositions of the monolayers before and after the transfer onto the substrate. Moreover, the molecular arrangement in the LB films and possible mechanisms of DOPC-CsA-LG interactions were determined. The wettability studies provided information on the type and magnitude of the interactions that can occur between the biocoatings and the liquids imitating different environments. It was found that the changes from open to closed conformation of CsA molecules are driven by the hydrophobic environment ensured by the surrounding DOPC and LG molecules. This process is of significance to drug delivery where the CsA molecules can be released directly from the biomaterial surface by passive diffusion. The obtained results showed that the chosen techniques are complementary for the characterization of the molecular organization of multicomponent LB films at the polymer substrate as well as for designing biocompatible coatings with precisely defined wettability.
format Online
Article
Text
id pubmed-9780983
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97809832022-12-24 Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings Szafran, Klaudia Jurak, Małgorzata Mroczka, Robert Wiącek, Agnieszka Ewa Pharmaceutics Article Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir–Blodgett (LB) technique, on activated by air low temperature plasma PET plates (PET(air)). Their topography and surface chemistry were determined with the help of atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), respectively, while wettability was evaluated by the contact angle measurements. Then, the surface free energy and its components were calculated from the Lifshitz–van der Waals/Acid–Base (LWAB) approach. The AFM imaging showed that the Langmuir monolayers were transferred effectively and yielded smoothing of the PET(air) surface. Mass spectrometry confirmed compatibility of the quantitative and qualitative compositions of the monolayers before and after the transfer onto the substrate. Moreover, the molecular arrangement in the LB films and possible mechanisms of DOPC-CsA-LG interactions were determined. The wettability studies provided information on the type and magnitude of the interactions that can occur between the biocoatings and the liquids imitating different environments. It was found that the changes from open to closed conformation of CsA molecules are driven by the hydrophobic environment ensured by the surrounding DOPC and LG molecules. This process is of significance to drug delivery where the CsA molecules can be released directly from the biomaterial surface by passive diffusion. The obtained results showed that the chosen techniques are complementary for the characterization of the molecular organization of multicomponent LB films at the polymer substrate as well as for designing biocompatible coatings with precisely defined wettability. MDPI 2022-12-15 /pmc/articles/PMC9780983/ /pubmed/36559307 http://dx.doi.org/10.3390/pharmaceutics14122815 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Szafran, Klaudia
Jurak, Małgorzata
Mroczka, Robert
Wiącek, Agnieszka Ewa
Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title_full Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title_fullStr Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title_full_unstemmed Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title_short Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
title_sort surface properties of the polyethylene terephthalate (pet) substrate modified with the phospholipid-polypeptide-antioxidant films: design of functional biocoatings
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780983/
https://www.ncbi.nlm.nih.gov/pubmed/36559307
http://dx.doi.org/10.3390/pharmaceutics14122815
work_keys_str_mv AT szafranklaudia surfacepropertiesofthepolyethyleneterephthalatepetsubstratemodifiedwiththephospholipidpolypeptideantioxidantfilmsdesignoffunctionalbiocoatings
AT jurakmałgorzata surfacepropertiesofthepolyethyleneterephthalatepetsubstratemodifiedwiththephospholipidpolypeptideantioxidantfilmsdesignoffunctionalbiocoatings
AT mroczkarobert surfacepropertiesofthepolyethyleneterephthalatepetsubstratemodifiedwiththephospholipidpolypeptideantioxidantfilmsdesignoffunctionalbiocoatings
AT wiacekagnieszkaewa surfacepropertiesofthepolyethyleneterephthalatepetsubstratemodifiedwiththephospholipidpolypeptideantioxidantfilmsdesignoffunctionalbiocoatings