Cargando…

A Mathematically Generated Noise Technique for Ultrasound Systems

Ultrasound systems have been widely used for consultation; however, they are susceptible to cyberattacks. Such ultrasound systems use random bits to protect patient information, which is vital to the stability of information-protecting systems used in ultrasound machines. The stability of the random...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hojong, Shin, Seung-Hyeok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780985/
https://www.ncbi.nlm.nih.gov/pubmed/36560076
http://dx.doi.org/10.3390/s22249709
Descripción
Sumario:Ultrasound systems have been widely used for consultation; however, they are susceptible to cyberattacks. Such ultrasound systems use random bits to protect patient information, which is vital to the stability of information-protecting systems used in ultrasound machines. The stability of the random bit must satisfy its unpredictability. To create a random bit, noise generated in hardware is typically used; however, extracting sufficient noise from systems is challenging when resources are limited. There are various methods for generating noises but most of these studies are based on hardware. Compared with hardware-based methods, software-based methods can be easily accessed by the software developer; therefore, we applied a mathematically generated noise function to generate random bits for ultrasound systems. Herein, we compared the performance of random bits using a newly proposed mathematical function and using the frequency of the central processing unit of the hardware. Random bits are generated using a raw bitmap image measuring 1000 × 663 bytes. The generated random bit analyzes the sampling data in generation time units as time-series data and then verifies the mean, median, and mode. To further apply the random bit in an ultrasound system, the image is randomized by applying exclusive mixing to a 1000 × 663 ultrasound phantom image; subsequently, the comparison and analysis of statistical data processing using hardware noise and the proposed algorithm were provided. The peak signal-to-noise ratio and mean square error of the images are compared to evaluate their quality. As a result of the test, the min entropy estimate (estimated value) was 7.156616/8 bit in the proposed study, which indicated a performance superior to that of GetSystemTime. These results show that the proposed algorithm outperforms the conventional method used in ultrasound systems.