Cargando…
A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuni...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781031/ https://www.ncbi.nlm.nih.gov/pubmed/36560205 http://dx.doi.org/10.3390/s22249836 |
_version_ | 1784856974002749440 |
---|---|
author | Li, Kailin Li, Jiansheng Wang, Ancheng Luo, Haolong Li, Xueqiang Yang, Zidi |
author_facet | Li, Kailin Li, Jiansheng Wang, Ancheng Luo, Haolong Li, Xueqiang Yang, Zidi |
author_sort | Li, Kailin |
collection | PubMed |
description | To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels. |
format | Online Article Text |
id | pubmed-9781031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97810312022-12-24 A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning Li, Kailin Li, Jiansheng Wang, Ancheng Luo, Haolong Li, Xueqiang Yang, Zidi Sensors (Basel) Article To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels. MDPI 2022-12-14 /pmc/articles/PMC9781031/ /pubmed/36560205 http://dx.doi.org/10.3390/s22249836 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Kailin Li, Jiansheng Wang, Ancheng Luo, Haolong Li, Xueqiang Yang, Zidi A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title | A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title_full | A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title_fullStr | A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title_full_unstemmed | A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title_short | A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning |
title_sort | resilient method for visual–inertial fusion based on covariance tuning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781031/ https://www.ncbi.nlm.nih.gov/pubmed/36560205 http://dx.doi.org/10.3390/s22249836 |
work_keys_str_mv | AT likailin aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT lijiansheng aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT wangancheng aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT luohaolong aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT lixueqiang aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT yangzidi aresilientmethodforvisualinertialfusionbasedoncovariancetuning AT likailin resilientmethodforvisualinertialfusionbasedoncovariancetuning AT lijiansheng resilientmethodforvisualinertialfusionbasedoncovariancetuning AT wangancheng resilientmethodforvisualinertialfusionbasedoncovariancetuning AT luohaolong resilientmethodforvisualinertialfusionbasedoncovariancetuning AT lixueqiang resilientmethodforvisualinertialfusionbasedoncovariancetuning AT yangzidi resilientmethodforvisualinertialfusionbasedoncovariancetuning |