Cargando…
A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuni...
Autores principales: | Li, Kailin, Li, Jiansheng, Wang, Ancheng, Luo, Haolong, Li, Xueqiang, Yang, Zidi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781031/ https://www.ncbi.nlm.nih.gov/pubmed/36560205 http://dx.doi.org/10.3390/s22249836 |
Ejemplares similares
-
ESVIO: Event-Based Stereo Visual-Inertial Odometry
por: Liu, Zhe, et al.
Publicado: (2023) -
Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
por: Caruso, Marco, et al.
Publicado: (2021) -
PLI-VINS: Visual-Inertial SLAM Based on Point-Line Feature Fusion in Indoor Environment
por: Zhao, Zhangzhen, et al.
Publicado: (2022) -
Multi-Scale Feature Fusion of Covariance Pooling Networks for Fine-Grained Visual Recognition
por: Qian, Lulu, et al.
Publicado: (2023) -
Heavy ion inertial fusion
por: Böck, R K
Publicado: (1995)