Cargando…

Polyhydroxyalkanoate Production from Fruit and Vegetable Waste Processing

Traditional plastics represent a tremendous threat to the environment because of increases in polluting manufacturing as well as their very extended degradation time. Polyhydroxyalkanoates (PHAs) are polymers with similar performance to plastic but are compostable and synthesizable from renewable so...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Paolo, Basaglia, Marina, Casella, Sergio, Favaro, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781074/
https://www.ncbi.nlm.nih.gov/pubmed/36559896
http://dx.doi.org/10.3390/polym14245529
Descripción
Sumario:Traditional plastics represent a tremendous threat to the environment because of increases in polluting manufacturing as well as their very extended degradation time. Polyhydroxyalkanoates (PHAs) are polymers with similar performance to plastic but are compostable and synthesizable from renewable sources and therefore could be a replacement for fossil-based plastics. However, their production costs are still too high, thus demanding the investigation of new and cheap substrates. In this sense, agricultural wastes are attractive because they are inexpensive and largely available. Specifically, fruit and vegetables are rich in sugars that could be fermented into PHAs. In this work two strains, Cupriavidus necator DSM 545 and Hydrogenophaga pseudoflava DSM 1034, well-known PHA-producing microbes, were screened for their ability to grow and accumulate PHAs. Ten different fruit and vegetable processing waste streams, never before reported in combination with these strains, were tested. Residues from red apple and melon were found to be the most suitable feedstocks for PHA production. Under specific selected conditions, C. necator DSM 545 accumulated up to 7.4 and 4.3 g/L of 3-hydroxybutyrate (3HB) from red apple and melon, respectively. Copolymer production was also obtained from melon. These results confirm the attractiveness of food processing waste as a promising candidate for PHA production. Ultimately, these novel substrates draw attention for future studies on process optimization and upscaling with C. necator.