Cargando…

Chickpea and Lupin Sprouts, Stimulated by Different LED Lights, As Novel Examples of Isoflavones-Rich Functional Food, and Their Impact on Breast and Prostate Cells

Among all legumes sprouts’ active compounds, isoflavones seem to be the most important; nevertheless, their high content is not always associated with beneficial effects. These compounds may prevent or stimulate hormone-dependent cancers due to their estrogen-like activity. Different LED light quali...

Descripción completa

Detalles Bibliográficos
Autores principales: Galanty, Agnieszka, Zagrodzki, Paweł, Miret, Marina, Paśko, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781113/
https://www.ncbi.nlm.nih.gov/pubmed/36558162
http://dx.doi.org/10.3390/molecules27249030
Descripción
Sumario:Among all legumes sprouts’ active compounds, isoflavones seem to be the most important; nevertheless, their high content is not always associated with beneficial effects. These compounds may prevent or stimulate hormone-dependent cancers due to their estrogen-like activity. Different LED light quality can change the synthesis of active compounds and significantly influence the biological activity of the sprouts. This study aimed to evaluate the effects of LED light (red, blue, green, yellow), as well as total darkness, and natural light conditions (as reference), on isoflavones content, determined by HPLC-UV-VIS, during 10 days of harvesting of chickpea and lupin sprouts. Due to the ambiguous estrogenic potential of isoflavones, the impact of these sprouts on normal and cancer prostate and breast cells was evaluated. Yellow LED light resulted in the highest sum of isoflavones in chickpea sprouts (up to 1 g/100 g dw), while for green LED light, the isoflavones sum was the lowest. The exact opposite effect was noted for lupin sprouts, with the predominance of green over the yellow LED light. The examined sprouts were of high safety to non-neoplastic breast and prostate cells, with interesting cytotoxic effects on breast MCF7 and prostate DU145 cancer cells. No clear relationship was observed between the activity and isoflavones content.