Cargando…

Automatic Recognition of Road Damage Based on Lightweight Attentional Convolutional Neural Network

An efficient road damage detection system can reduce the risk of road defects to motorists and road maintenance costs to traffic management authorities, for which a lightweight end-to-end road damage detection network is proposed in this paper, aiming at fast and automatic accurate identification an...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Han, Lee, Seong-Cheol, Seo, Suyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781160/
https://www.ncbi.nlm.nih.gov/pubmed/36559968
http://dx.doi.org/10.3390/s22249599
Descripción
Sumario:An efficient road damage detection system can reduce the risk of road defects to motorists and road maintenance costs to traffic management authorities, for which a lightweight end-to-end road damage detection network is proposed in this paper, aiming at fast and automatic accurate identification and classification of multiple types of road damage. The proposed technique consists of a backbone network based on a combination of lightweight feature detection modules constituted with a multi-scale feature fusion network, which is more beneficial for target identification and classification at different distances and angles than other studies. An embedded lightweight attention module was also developed that can enhance feature information by assigning weights to multi-scale convolutional kernels to improve detection accuracy with fewer parameters. The proposed model generally has higher performance and fewer parameters than other representative models. According to our practice tests, it can identify many types of road damage based on the images captured by vehicle cameras and meet the real-time detection required when piggybacking on mobile systems.