Cargando…
A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression
Travel time prediction is essential to intelligent transportation systems directly affecting smart cities and autonomous vehicles. Accurately predicting traffic based on heterogeneous factors is highly beneficial but remains a challenging problem. The literature shows significant performance improve...
Autores principales: | Chughtai, Jawad-ur-Rehman, Haq, Irfan ul, Islam, Saif ul, Gani, Abdullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781256/ https://www.ncbi.nlm.nih.gov/pubmed/36560104 http://dx.doi.org/10.3390/s22249735 |
Ejemplares similares
-
An attention-based recurrent learning model for short-term travel time prediction
por: Chughtai, Jawad-ur-Rehman, et al.
Publicado: (2022) -
Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas
por: Zafar, Noureen, et al.
Publicado: (2022) -
Genome-Wide Identification, Evolutionary and Mutational Analysis of the Buffalo Sox Gene Family
por: Abdullah, Muhammad, et al.
Publicado: (2023) -
A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal
por: Ullah, Amin, et al.
Publicado: (2021) -
Molecular Characterization of TGF-Beta Gene Family in Buffalo to Identify Gene Duplication and Functional Mutations
por: Rehman, Muhammad Saif-ur, et al.
Publicado: (2022)