Cargando…
Multi-Temperatures Pyrolysis Gas Chromatography: A Rapid Method to Differentiate Microorganisms
The identification of microorganisms using single-temperatures pyrolysis gas chromatography (ST-PyGC) has limitations, for example, the risk of missing characteristic peaks that are essential to the chemotaxonomic interpretation. In this paper, we proposed a new multi-temperature PyGC (MT-PyGC) meth...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781292/ https://www.ncbi.nlm.nih.gov/pubmed/36557587 http://dx.doi.org/10.3390/microorganisms10122333 |
Sumario: | The identification of microorganisms using single-temperatures pyrolysis gas chromatography (ST-PyGC) has limitations, for example, the risk of missing characteristic peaks that are essential to the chemotaxonomic interpretation. In this paper, we proposed a new multi-temperature PyGC (MT-PyGC) method as an alternative to ST-PyGC, without sacrificing its speed and quality. Six bacteria (three Gram-positive and three Gram-negative), one micro-fungus and one archaeon, representing microorganisms from different domains, were analyzed by MT-PyGC. It is found that MT pyrograms cover a more complete range of characteristic peaks than ST. Coupling with thermogravimetric analysis, chemotaxonomic information extracted from pyrograms by MT-PyGC have the potential for the differentiation of microorganisms from environments including deep subterranean reservoirs and biomass conversion/biofuel production. |
---|